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A single periodic chain of noncontacting noble-metal nanoparticles is predicted to provide focusing in a
cylindrical geometry of optical fields whose frequency lies within the surface-plasmon-polariton band polar-
ized perpendicular to the chain axis for fields dominated by that component based on an analytic nonlocal
vector electrodynamic theory in the Fresnel limit. Exact closed-form expressions within the model for the
coherently scattered field and the quadratic phase are obtained.
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Since Pendry1 predicted perfect lensing by a thin slab of
negative-refractive-index �NRI� material, there has been a
flurry of activity both in using metal films and slabs for
perfect lensing as well as in the design and fabrication of
appropriate metamaterials to achieve NRI.2 Later several
groups pointed out that periodic arrangements of noncontact-
ing noble-metal nanoparticles �NPs� �Refs. 3 and 4� could
give rise to NRI.5–7 Kempa et al.8 have shown that the in-
trinsic couplings within a simple periodic metal-nanoparticle
lattice would lead to NRI effects.

The paradigm for understanding NRI effects is, namely,
that: a refractive index with a negative value. As such, fo-
cusing by metal films or metamaterials is understood on the
basis of the Fresnel equations, an intrinsically local electro-
dynamic theory �even if nonlocality has been taken into ac-
count in deriving a refractive index9�. Indeed, for layers of
thickness ��, one expects nonlocality to enter from the start,
and the very idea of a refractive index to be of limited va-
lidity. A more appropriate viewpoint is that an incident elec-
tromagnetic wave couples to material modes of the system
whose group and phase velocities projected onto the material
interface are in opposite directions.1,8 The material modes
then re-emit in a direction that appears as if the material
possesses a NRI.

In the following, we show that indeed nonlocality is es-
sential in nanoscale structures, choosing a chain of noncon-
tacting noble-metal NPs that supports surface plasmon �SP�
polaritons �SPP� as our test case. We predict that those spa-
tial Fourier components of the electromagnetic field polar-
ized transversely T with respect to the NP chain �NPC� axis
can undergo focusing while longitudinal L components al-
ways suffer defocusing. These effects cannot be understood
on the basis of a local electrodynamic theory phrased in
terms of a refractive index.

The situation envisaged is shown in Fig. 1. A light source
along a small length of arc of radius � �object� is to be
imaged on a cylinder of radius ��. Thus, the problem breaks
down into three parts: propagation from the object to the
NPC, excitation of SPPs that radiate, and propagation from
the NPC to the image. The free-space propagation will be
treated in the Fresnel limit. The excitation of SPPs and their
subsequent electromagnetic radiation will be treated within
nonlocal vector electrodynamics.

We begin with the second task inasmuch as the first and
third are well known and rather mechanically implemented.
There are typically three types of SPPs in a NP array asso-

ciated with the direction of the SP dipole moment. Depend-
ing on the lattice symmetry and the excitation wave vector k,
there are two transverse or T modes where the dipole mo-
ments are perpendicular to k and one longitudinal or L mode
where the dipole moments are parallel to k; only the T
modes exhibit the requisite downward trend with increasing
k in their dispersion curves. In practice, these modes may
exhibit k-dependent LT mixing, particularly in low-
symmetry directions within the Brillouin zone.10 The situa-
tion, however, simplifies for a one-dimensional system. Con-
sider a NPC along the z axis embedded within a uniform
dielectric. There are two T-modes and one L-mode.

SPPs in NPCs can be described11 exactly, in the sense of
accounting for the retarded vector electromagnetic field,
treating the NPs as point dipoles within the coupled-dipole
model.12 Specifically, we consider a linear array of equis-
paced NPs �isotropic point dipoles� that interact with the
retarded electromagnetic fields emitted by the other NPs and
with an incident electromagnetic field U1�nd� at the location
ndẑ of NP n, oscillating at frequency � /� with � the photon
energy, ẑ a unit vector pointing along the NPC axis in the z
direction, and n�Z; d is the center-to-center spacing be-
tween NPs. The NPC is assumed to be embedded in a uni-
form dielectric with refractive index nemb. In a NPC of iso-
tropic dipoles, because the L and the two T modes are
decoupled, we can decompose U1�nd� into components
along these three directions and compute the NPC’s response
to each component separately. We shall assume this decom-
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FIG. 1. Schematic of imaging geometry. Object lies on a cylin-
der of radius � and is imaged on a cylinder of radius ��. The nano-
particle chain lies on the concentric z axis of the cylinders; � and u
measure the vertical coordinate on object and image cylinders,
respectively.
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position has been accomplished, thus producing a net re-
sponse that may be simply obtained via superposition; the
polarization index and the vector notation will henceforth be
dropped. The dipole moment dn on NP n is determined by
dn=�U1�nd�+	� j=−



 �njdj, where the polarizability is �
= p	 with 	=2�0 / ��2−�0

2+2i�0�nr� the susceptibility and p
=6
�0��c�3�2�r� / �nemb�0

3�.13 Here, �0 is the single-NP SP
energy, �nr /� is the single NP SP amplitude nonradiative
decay rate, and �0 is the permittivity of free space. The ra-
diative decay rate in the embedding dielectric is �r /�
=nemb�0 /� with �0 /� the free-space value. These parameters
were calculated in an electron-oscillator model13 but p and �r
may be regarded as adjustable parameters depending on the
specific model employed. The radiative self-energy �SE� �nj
is the retarded dipole-dipole energy of dipoles n and j; de-
tailed expressions are given in Ref. 11.

Due to the translational invariance of the problem, we can
characterize the SPPs by the excitation wave vector kz along
the NPC axis. We take an incident field U1�nd�
=u0 exp�inkzd� with u0 a constant field amplitude. Such a
field induces excitation13

dn = d0einkzd, d0 = pu0/�	−1 − �kz
� �1�

with exact closed-form expressions for the SE given in Ref.
11. The freely oscillating SPPs are found by setting U1�nd�
=0, which gives the PP dispersion relation 	−1−�kz

=0.11

Our aim is to discuss the imaging properties of the NPC.
To this end, we consider the electric field Ui�r�� at r� scat-
tered by the NPC SPPs. We assume the cylindrical geometry
as shown in Fig. 1. Write Ui�r��=− �2

4
�0
ui�r��. Near the opti-

cal axis, we shall employ the Fresnel approximation,
whereby we replace exp�i��r�−rn�� / �r�−rn� by
ei���

��
exp�i��z�−nd�2 / �2���� with �� the distance from the z

axis in cylindrical coordinates. A detailed discussion of the
validity of the Fresnel approximation is given in Ref. 14.
Suffice it to say here that the Fresnel approximation is valid
provided the object and image are sufficiently close to the
optical axis when compared with � and ��. The Fresnel ap-
proximation is only used to propagate the field UO��� from
the object to the NPC and from the NPC to the image UI�u�
as in Fig. 1; the SPPs within the NPC, however, are not
computed within the Fresnel approximation and assume an
infinitely long NPC. In the Fresnel limit ui�n�d�
=Bi

ei���

��
�n=−



 dnei�d2�n�− n�2/�2���, where BL= ẑ and BT= �̂, rn

=ndẑ and �=�nemb / ��c� with c the in vacuo speed of light,
and we restrict our attention to discrete locations with z�
=n�d.

From our expression for dn, we have for local excitation
with field U1�nd�=u0�0n at �without loss of generality� n=0,

dn = pu0
d



�

−
/d


/d dkz

	−1 − �kz

einkzd. �2�

While exact expressions are available for �kz
,11 their employ-

ment would render the integral above intractible.
We assume in effect a static nearest-neighbor dipole-

dipole coupling, and neglect all other couplings.4 In this
case, �kz

=
� j

2 cos kzd, where j=L ,T and
� j

2 the SPP bandwidth

for polarization j with �L=−2�0, �T=�0, and �0 /2
=�r / ��d�3. For n�0, Eq. �2� gives15

dn =
2	pu0



�

0


 d�

1 + g cos �
cos n� =

2	pu0

�1 − g2
	�1 − g2 − 1

g

n

�3�

with g=−	� j /2. The main effect of this approximation is
likely to be the neglect of the radiative losses �imaginary part
of �k whose scale is set by �r� for �k���. Inasmuch as �r is
typically considerably less than �nr, from the viewpoint of
the imaging properties of NPCs, it is the nonradiative losses
that are likely to play the leading role. To the extent �nr can
be taken to be k independent, the inclusion of these losses is
straightforward in the treatment below. Its two main effects
are giving in effect a range of k values of SPPs excited by a
monochromatic source �blurring the image� and also render-
ing invalid the final closed-form result for the quadratic
phase we find below that provides the condition for an im-
aging geometry.

To proceed, put ei�= ��1−g2−1� /g �n�0�. Within the
SPP band, �g��1. Note that g=−

� j

2 ��−�0+ i�nr�−1, whence
sgn Im�1−g2=−sgn � j. Thus, �1−g2= � i�g2−1 for the L
and T modes, respectively. We therefore have ei�=cos �
+ i sin �= ��1−g2−1� /g= � i�1−g−2−g−1. For negligible
�nr, we can easily equate the real and imaginary parts of this
expression. The real part gives �=arccos�−g−1� while the
imaginary part restricts � to 0� ���
, again where the
upper �lower� sign is for the L �T� mode. Rearranging �
=arccos�−g−1�, we see that this is just the dispersion relation
�−�0+ i�−

� j

2 cos �=0. In other words, �
d is the wave vector

satisfying the dispersion relation for excitation energy � and
further obeys ��0 ��0� for L �T� modes, viz., SPPs whose
phase velocity is traveling away from �toward� NP 0 are
excited for L �T� polarized light.

For excitation outside the SPP band, �g��1. Then ei�

= ��g−2−1−g−1� and its reciprocal e−i�= �−�g−2−1−g−1�.
Forming cosh i�, we obtain either i�=arccosh�−g−1� or i�=
−arccosh�−g−1�. Only the second is consistent with �=
−arccos�−g−1� and 0� ���
 for �g��1.

Finally, consider the case when n�0. Then,

dn =
2	pu0

�1 − g2
	�1 − g2 − 1

g

−�n�

=
2	pu0

�1 − g2
	− �1 − g2 − 1

g

�n�

. �4�

Consequently, ei�=cos �+ i sin �= �−�1−g2−1� /g
= � i�1−g−2−g−1, whence for n�0, �=arccos�−g−1� with
0� ���
 for �g��1 and i�=arccosh�−g−1� for �g��1.

This lengthy analytical discussion of the Eqs. �3� and �4�
is of key importance; we see that for excitation frequencies
within the SPP band, if the polarization is L �T�, then reso-
nant SPPs are excited with phase velocity away from �to-
ward� the point of excitation, while for excitation outside the
SPP band, the SPPs excited decay exponentially away from
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the point of excitation. While in the foregoing discussion, we
took �nr to be negligibly small, the beauty of the analysis is
that it applies for non-negligible �nr as well.

With reference to Fig. 1, assume, as stated above, the
object field UO��� is a short arc source on the circumference
of the cylinder of radius � at �=0. We will use the Fresnel
approximation to propagate the object field UO��� to the
NPC and from the NPC to the image field UI�u�, where � and
u are the vertical coordinates on the object and image cylin-
ders. We shall not be concerned about the � dependence.
Since fields near the optical axis are of main import, we can
assume that fields coupled to the L �T� modes only produce
fields on the image cylinder polarized in the u ��� direction.

In view of the above, we have U1�z�
=u01 / i��ei�� exp�i� / 2��z−��2�. Then, U2�n�d�
=�n=−



 U1�nd�dn, giving

U2�n�d� = −
�2

4
�0
u0ei�� 2p	

i���1 − g2

� �
n=−





ei��/2���nd − ��2
ei�n�−n�� �5�

with � for n�0. Further propagating the field to the image
cylinder gives the point spread function h�u ,�� for the imag-
ing system given an arbitrary object field UO��� as UI�u�
=�d�h�u ,��UO��� with14

h�u,�� =
�2

4
�0

2p�

�2����1 − g2
ei���+���

� �
n,n�=−





ei��/2����n�d − u�2
ei�n�−n��ei��/2���nd − ��2

=
�2

4
�0

2p�

�2����1 − g2
ei���+���ei��/2��u2/��+�2/�� �

n,n�=−





�e−i��d/���n�uei��d2/2���n�2
ei�n�−n��e−i��d/��n��ei��d2/2��n2

.

�6�

Equation �6� is key to our study. Let us consider it factor
by factor. The prefactor �2

4
�0

2b�

�2���
�1−g2�−1/2ei���+��� does not

contain any variation in the vertical direction and thus we
consider it no further. The quadratic phase factors ei��/2��u2/���

and ei��/2���2/�� will be neglected as these phases can be cor-
rected for by suitable curvature of the object and image sur-
faces in the vertical direction.14 Finally, we are left with the
factor of interest, viz., the double summation. Put �=n�−n
and N= n�+n

2 ; we can rewrite the summation in Eq. �6� as

�
�,N=−





e−i��d/����N+�/2�uei��d2/2����N + �/2��2

�ei�n�−n��e−i��d/���N−�/2��ei��d2/2���N − �/2�2

= �
N=−





e−i�dN�u/��+�/��JN, �7�

JN = ei��d2/2��1/��+1/��N2 �
�=−





e−i��d/2��u/��−�/���

�ei����ei��d2/2��1/��−1/��N�ei��d2/8��1/��+1/���2
. �8�

To characterize the imaging properties of the NPC, we
need to extract the quadratic phase q �proportional to N2� in
JN, i.e., obtained from the phase factor eiqN2

. One such phase
factor appears explicitly, viz., ei��d2/2��1/��+1/��N2

. Other contri-
butions are contained within the summation in JN. Thus, we
seek to isolate the quadratic phase factor in JN of the form
e−i��d2/2��1/f�N2

, where f is the focal length, should it exist, for
which the lens equation 1

� + 1
��

= 1
f holds.

In evaluating JN, we shall neglect the u- and �-dependent
factors �assuming the object and image are close to the op-
tical axis� and further we shall make a long-wavelength ap-
proximation, whereby the summation over � is replaced by
an integration. This should be valid so long as the nanopar-
ticle center-to-center spacing d�

2

� and we are not inter-

ested in values of � too close to �
. The main effect of d in
the long-wavelength approximation is simply to determine
the SPP bandwidths

� j

2 as given above in the expression for
�0. Thus, the smaller d, the larger the SPP bandwidths, and
thus the easier it is to select the resonant SPP wave vector in
the presence of the inevitable �nr�0 by a monochromatic
source. Small d is thus desirable. �Moreover, small d implies
a large oscillator strength associated with the SPPs, and thus
the scattered field of interest will be enhanced.� If the long-
wavelength approximation is not satisfied, the discreteness of
the NPC becomes important and the summations can no
longer be approximated as integrals. The NPC then acts as a
grating rather than a metamaterial, and will produce pro-
nounced diffraction orders in UI�u�, which in an imaging
context will be undesirable artifacts. Putting �= �d

8 � d
��

+ d
� �

and b= �d
2 � d

��
− d

� � �N.B., �b��4��, we have

JN �
2

d
e4i�N2�

0




dyei�y/dei�y2/d2
cos

bNy

d

=
1

2
� 


i�
e4i�N2
e�i� − ibN�2/4i� erfc	 i� − ibN

2�i�



+ e�i� + ibN�2/4i� erfc	 i� + ibN

2�i�

� �9�

with erfc the complementary error function.
Setting the quadratic phase q���=4�+limN→0�arg�JN�

−arg�J0�� /N2 to zero determines those excitation wave vec-
tors � �surrogate for frequencies� for which the image is in
focus for a given geometry characterized by � and b. The
limit can be carried out as follows. First, expand Eq. �9� in
powers of N, viz., JN�J0�1− b2N2

2 j2 /J0� with j2

=2�0

dxx2ei�xei�x2

=−i �
��J0. Both J0 and j2 can be expressed

in closed form by lengthy expressions �not given here� in-
volving error functions. From the above, one then has
q���=4�+limN→0�arg�J0�+arg�1− b2N2

2
j2

J0
�−arg�J0�� /N2=4�

+limN→0 arg�1− b2N2

2
j2

J0
� /N2. We have limN→0 arg�1
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− b2N2

2
j2

J0
� /N2 = Im ln�1− b2N2

2
j2

J0
� /N2 = − b2N2

2 Im�
j2

J0
� /N2=− b2

2 Im

��
j2

J0
�. This can be simplified as q���=4�+b2 / 4�

+ b2� / 4��
 Im�exp�− i�2 / 4� � /�i�erfc�i� / 2�i���.
In Fig. 2 is plotted q��� for �=0.04 and �b�=3�. What we

are looking for are values of � �excitation wave vectors, in
turn energies� such that q���=0 for which the lens equation
is satisfied and an image is formed. Note that for ��0 �i.e.,
the L modes�, q����0, from which we conclude that a
L-polarized object does not form an image; the defocusing
effect of L modes is rather weak compared with the free-
space quadratic phase 4�. Nonetheless, whether q����4� or
q����4� predicts whether the NPC acts in effect as a con-
verging or diverging lens. Recall, �b��4�, and based on Eq.
�9�, JN and thus q��� are independent of the sign of b, and
consequently the focusing is symmetric �which is not sur-
prising�, viz., if �� ,��� is a focusing geometry, so is ��� ,��.
When �b� is at its maximum value, the amplitude of the os-
cillations in q��� that increase with decreasing � reaches its
maximum. Since � sets the value these oscillations must
overcome to give q���=0, focusing geometries favor small �

and large �b�; we find ��0.154 with �b�=4� is the maximum
value of � to result in focusing, for which �=−
. When
focusing occurs, the total quadratic phase vanishes, and thus
from the lens equation we can write down a focal length;
however, this cannot be interpreted as the focal length in the
usual sense of the NPC since when this occurs itself depends
on �. Our discussion of the limited cases here is only ap-
proximate; since we have made the long-wavelength ap-
proximation, our results can only serve as a rough guide for
����
. Also note that ��

1
� + 1

��
while b�

1
� − 1

��
; �b�=4�

means either � or ��=0 or 
. Finally, once the desired value
of � is found for T-polarized focusing to occur, the corre-
sponding value of the excitation energy � can be obtained.

To conclude, we have presented a treatment of the imag-
ing properties of a NPC in a cylindrical geometry chosen to
provide an analytically tractable model for vector lensing
effects in NP structures. A focusing effect is predicted for
monochromatic fields within the T SPP band. Limitations to
the resolution are expected due to �nr and its role in spread-
ing out in k space the range of resonant SPPs excited by a
monochromatic source. In the foregoing numerical ex-
amples, we did not include �nr, though all the expressions
except the final one for q��� remain valid; then ��C. As the
value of � is decreased, there are an increasing number of
values of � for which q����0; thus the ability to choose a
narrow range of excitation wave vectors � by varying energy
� will be reduced by the inclusion of �nr �though this effect
can be taken into account using the above expressions�. Con-
sequently, chromatic aberration will be severe and fairly
monochromatic objects will be required. Other questions left
unexplored are going beyond the long-wavelength and
Fresnel approximations, higher-order phases �that may limit
the image formation to unreasonably small objects�, and the
role of the neglected u- and �-dependent phases. Finally, we
have not considered the artifact associated with the nonscat-
tered portion of the incident object field.
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FIG. 2. Quadratic phase q��� in z direction as a function of the
excitation wave vector � resonant with the object �. Horizontal
dashed line shows quadratic phase associated with propagation
from object to nanoparticle chain on the z axis, and from nanopar-
ticle chain to image; thus, it does not account for the effect of the
nanoparticle chain. Values of ��0 correspond to L-polarized com-
ponent of object while ��0 corresponds to T-polarized component.
When q���=0, focusing of T-polarized component occurs.
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